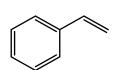
CHEMISTRY 2323: Fundamentals of Organic Chemistry I

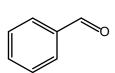
Prof. Ognjen Š. Miljanić

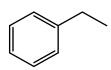
Final Exam December 9, 2025

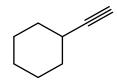
Name:		Student ID Number:	
(print legibly) Last	First		

Read all directions very carefully. Write your answer legibly in the designated spaces. Total number of points is 400. This exam is printed on both sides and should have eight pages, with the last two intentionally left empty.

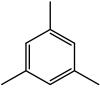

1. This question has several parts. In each, **circle only one entry**. Circle the only achiral compound:


 $5 \times 8 = 40$ points





Circle the only compound that would show a strong IR absorption around 1700 cm⁻¹:



Circle the only compound which would show only singlets in an ¹H NMR spectrum:

Circle the only conformation that does not represent the molecule of butane:

Circle the approximate barrier to the rotation around the C–C bond in ethane:

160 kcal mol⁻¹

3 kcal mol⁻¹

-30 kcal mol⁻¹

150 pm

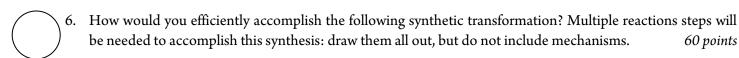
 $10^4\,kcal\,mol^{-1}$

DO NOT WRITE
IN THIS SPACE

FINAL SCORE

2. Predict the products of the following reactions. Don't worry about the size of the molecule; concentrate on the functional groups.

60 points


Textbook problem 8-46 (McMurry, 10th edition)

3. Show the arrow-pushing mechanism for the transformation shown below, which involves carbocations intermediate and their rearrangement. HINT: Number the carbon atoms and keep track of them! 50 points

Textbook problem 13-38 (McMurry, 10th edition)

5. Carefully examine the structure of 1-bromo-2-chlorobenzene, shown below. In its mass spectrum, how many molecular ions would you expect, what would be their masses, and their relative rations? In its ¹H NMR spectrum, how many peaks would you expect? What would be their multiplicities (singlet, doublet, triplet ...) and relative size ratios (integration)?

50 points

7. Write the missing products, reactants, or reagents for the reactions shown below. Make sure to include stereochemistry where pertinent, but do not write mechanisms.

100 points

8. Bictegravir is one of the three compounds used in the modern blockbuster drug mix that suppresses the replication of the HIV virus. It is also a chiral molecule. Circle all its chiral centers and determine the (R)/(S) configuration of any one of them.

hydrogen 1	A																2000	helium 2
H																		He
1.0079 lithium	beryllium	Ì										ĺ	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941 sodium	9.0122												10.811 aluminium	12.011 silicon	14.007	15.999 sulfur	18.998 chlorine	20.180
11	magnesium 12												13	14	phosphorus 15	16	17	argon 18
Na	Mg												Al	Si	Р	S	CI	Ar
22.990	24.305												26,982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	65,39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	İr	Pt	Au	Hg	ŤΙ	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	İ
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	ĺ
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	ı
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	ı
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102	i
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	l
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	

Characteristic Infrared (IR) Spectroscopy Vibrations

Functional G	roup	Absorption (cm ⁻¹)	<u>Intensity</u>		
Alkane	С-Н	2850-2960	Medium		
Alkene	=C-H	3020-3100	Medium		
	C=C	1640–1680	Medium		
Alkyne	≡C-H	3300	Strong		
	C≡C	2100-2260	Medium		
Alcohol	O–H	3400-3650	Strong, broad		
	C-O	1050-1150	Strong		
Amine	N-H	3300-3500	Medium		
	C-N	1030-1230	Medium		
Carbonyls	C=O	1670-1780	Strong		
Aldehyde		1730	Strong		
Ketone		1715	Strong		
Ester		1735	Strong		
Amide		1690	Strong		
Carboxylic acid		1710	Strong		
Carboxylic acid O–H		2500-3100	Strong, broad		
Nitrile	C≡N	2210-2260	Medium		