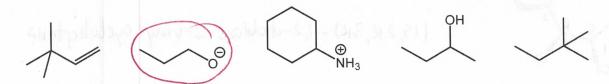
CHEMISTRY 2323: Fundamentals of Organic Chemistry I

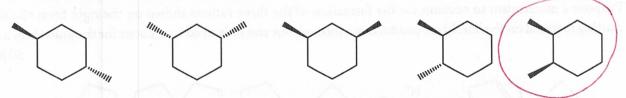
Second Midterm Exam October 17, 2025

Prof. Ognjen Š. Miljanić

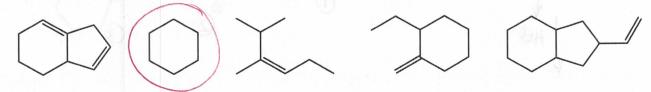
Name: Student ID Number: V/A

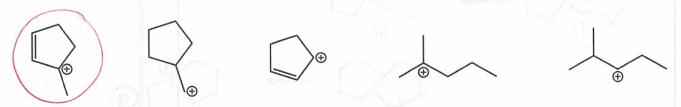

(print legibly) Last First

Read all directions very carefully. Write your answer legibly in the designated spaces and think carefully about what you are doing. The total number of points is 300. This exam is supposed to have six pages, with the last page intentionally left blank.



1. This question has several parts. In each part, **circle only one entry**. Circle the most nucleophilic compound:


 $5 \times 8 = 40$ points


Circle the least stable isomer of dimethylcyclohexane:

Circle the only compound which does not react with HBr:

Circle the most stable catiom (think about hyperconjugation and resonance):

The degree of unsaturation of atorvastation (Lipitor), which has molecular formula C₃₃H₃₅FN₂O₅, is:

1

4

12

17

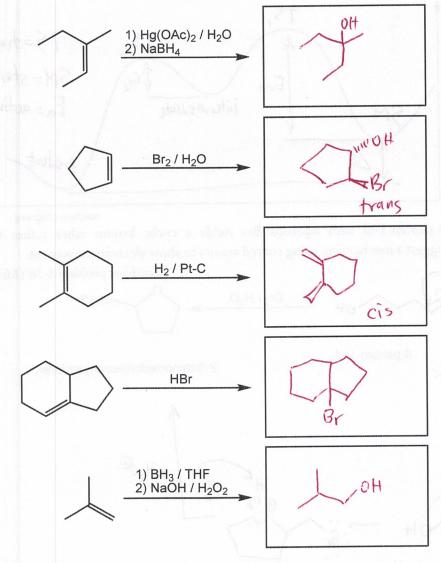
21

DO NOT WRITE IN BIS PACE

(30)

2. For each of the following structures, write their <u>complete systematic IUPAC name</u>. Be sure to indicate stereochemistry where this is pertinent. $3\times10 = 30$ points

50


3. Propose a mechanism to account for the formation of the three cations shown on the right from the alkene starting material on the left. More products are formed, but you only need to account for the ones shown here.

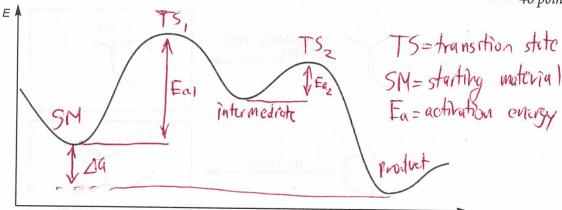
50 points

310

(60)

4. For each of the reactions or series of reactions below, draw the structure of the missing major organic product(s) in the box(es) provided. Make sure to include all the pertinent information about stereochemistry and charges. $5\times12 = 60$ points

(30)


5. Shown below is the chemical structure of <u>cocaine</u>—a central nervous system stimulant and a common illegal drug. Circle all the stereocenters in cocaine.

20 points

BONUS: Pick any two stereocenters in cocaine and determine whether they have (R) or (S) configuration. Be clear on which stereocenters you are referring to.

6. On the energy diagram shown below, clearly label (a) the activation energies for both steps, (b) the positions of the starting material, intermediate(s), transition states(s), and the product, and (c) the overall ΔG of the reaction.

reaction progress

7. Treatment of 4-penten-1-ol with aqueous Br₂ yields a cyclic bromo ether rather than the expected bromohydrin. Suggest a mechanism, using curved arrows to show electron movement.

40 points

20

8. Draw the two chair conformations of menthol, and tell which is more stable.

20 points

Textbook problem 4-45 (McMurry, 10th edition)

hydrogen 4																		helium 2
Ĥ																		He
1.0079 Ithium	beryllium											Γ	boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	4.0026 neon 10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14,007	15,999	18,998	20.180
sodium	magnesium												aluminium 13	silicon 14	phosphorus 15	sultur 16	chlorine 17	argon 18
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305			72									26.982	28.086	30.974	32.065	35,453	39,948
potassium 19	calcium 20		scandium 21	titanium 22	vanadum 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	zine 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44,956	47.867	60.942 nlobium	51,996 molybdenum	54,938 technetium	55,845 ruthenium	58,933 rhodium	58,693 palladium	63.546 sliver	65,39 cadmlum	69.723 indium	72.61 tin	74,922 antimony	78.96 tellurium	79,904 lodine	83.80 xenon
rubidium 37	strontium 38		yttrium 39	zireonium 40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.468	87.62		88,906	91.224	92.906	95.94	[98]	101.07	102.91 irldium	106.42 platinum	107,87 gold	112.41 mercury	thallium	118.71 lead	121.76 bismuth	127.60 polonium	126,90 astatine	131.29 radon
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	75	osmium 76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,91	137,33	- Victoria	174.97	178.49	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192,22 meitnerium	195.08 ununnilium	196,97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

								6	
								01-32	