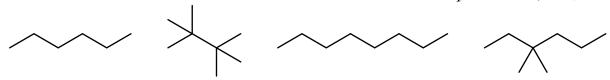
CHEMISTRY 2323: Fundamentals of Organic Chemistry I

Prof. Ognjen Š. Miljanić

First Midterm Exam September 24, 2021

Name:		Student ID Number:	
(print legibly) Last	First		


Read all directions very carefully. Write your answer legibly in the designated spaces and think carefully about what you are doing. Total number of points is 300. This exam is supposed to have eight pages, with the last two pages intentionally left blank.

1. This question has several parts. In each, **circle only one entry**.

Circle a compound with the highest boiling point:

 $5 \times 6 = 30$ points

Textbook question 3-10 (Wade, 9th edition)

The bond dissociation energy of a Cl—Cl bond is approximately:

0.05 kcal/mol

0.5 kcal/mol

5 kcal/mol

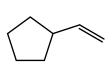
50 kcal/mol

500 kcal/mol

Circle the strongest acid:

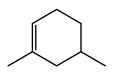
An equilibrium constant (K_{eq}) of approx. 150 corresponds to a ΔG^0 of approximately:

0.3 kcal/mol


−0.3 kcal/mol

3 kcal/mol

−3 kcal/mol

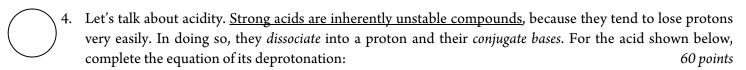

300 kcal/mol

Circle the only aromatic hydrocarbon:

DO NOT WRITE IN THIS SPACE

FINAL SCORE

- 2. For each of the following structures, give a **complete systematic IUPAC name**. Be sure to indicate stereochemistry where this is pertinent. $3\times15 = 45$ points
 - F CI CI


 - Br CI

- 3. Use a Newman projection about the indicated bond to draw the most stable conformer for each compound:
 - (a) 3-methylpentane about the C2—C3 bond
- (b) 3,3-dimethylhexane about the C3—C4 bond

Textbook question 3-44 (Wade, 9th edition)

40 points

Conjugate bases of strong acids are stable compounds (and therefore weak bases) which have a minimal desire to take the proton back. Figuring out whether an acid is strong or weak is more easily done by looking at its conjugate base. A stable conjugate base means that the corresponding acid was strong, and an unstable conjugate base means that the corresponding acid was weak. One way of stabilizing conjugate bases is resonance. For the three acids below, write all the resonance structures of their conjugate bases:

Now go back and circle the strongest acid of the three. Remember, it will be the one with the most stable conjugate base.

5.	three groups will be on the sa	e formula of all-cis-1,3-dichloro-2-methy ame side of the ring). Then, in the rest of le and circle the more stable one. Equato the methyl substituent.	the provided space, draw the two chair

6.	Bromine reacts with methane to produce bromomethane. Write out both propagation steps in this reaction: 50 points
	STEP 1:
	STEP 2:
	Calculate the ΔH^0 for both propagation steps of this reaction in kcal/mol. Consult the table on page 6 for specific bod dissociation energies (BDEs), and show your work. For each step, specify whether the reaction is exothermic or endothermic.
	STEP 1:
	STEP 2:
7.	There is something very wrong with one of the atoms in each of the three structures below. Circle the problematic atom in each structure and explain—in five words or less—what the problem is with each of those troubled atoms. 30 points
	OH OH

TABLE 4-2	Bond-Dissociation	Enthalpies	for Homolyti	c Cleavages
			A·R	A. + .P

		issociation halpy		Bond-Dissociation Enthalpy		
Bond	kJ/mol	kcal/mol	Bond	kJ/mol	kcal/mol	
H—X bonds and X—X bonds			Bonds to secondary carbons			
H-H	435	104	(CH ₃) ₂ CH—H	397	95	
D-D	444	106	(CH ₃) ₂ CH—F	444	106	
F-F	159	38	$(CH_3)_2CH-CI$	335	80	
CI-CI	242	58	$(CH_3)_2CH-Br$	285	68	
Br—Br	192	46	$(CH_3)_2CH-I$	222	53	
I-I	151	36	(CH ₃) ₂ CH—OH	381	91	
H-F	569	136				
H—Cl	431	103	Bonds to tertiary carbons			
H—Br	368	88	(CH ₃) ₃ C—H	381	91	
H-I	297	71	(CH ₃) ₃ C-F	444	106	
но—н	498	119	(CH ₃) ₃ C—Cl	331	79	
но-он	213	51	(CH ₃) ₃ C—Br	272	65	
Mashed hands			(CH ₃) ₃ C—I	209	50	
Methyl bonds			(CH ₃) ₃ C—OH	381	91	
CH ₃ —H	435	104				
CH ₃ —F	456	109	Other C—H bonds			
CH ₃ —Cl	351	84	PhCH ₂ —H (benzylic)	356	85	
CH ₃ —Br	293	70	$CH_2 = CHCH_2 - H (allylic)$	364	87	
CH ₃ —I	234	56	$CH_2 = CH - H \text{ (vinyl)}$	464	111	
CH ₃ —OH	381	91	Ph—H (aromatic)	473	113	
Bonds to primary carbons			C—C bonds			
CH ₃ CH ₂ —H	410	98	CH ₃ —CH ₃	368	88	
CH ₃ CH ₂ —F	448	107	CH ₃ CH ₂ —CH ₃			
CH ₃ CH ₂ —Cl	339	81	CH ₃ CH ₂ —CH ₃ CH ₂ CH ₂ CH ₃	356 343	85	
CH ₃ CH ₂ —Br	285	68	(CH ₃) ₂ CH—CH ₃	351	82	
CH ₃ CH ₂ —I	222	53			84	
CH ₃ CH ₂ —OH	381	91	$(CH_3)_3C-CH_3$	339	81	
CH ₃ CH ₂ CH ₂ —H	410	98				
CH ₃ CH ₂ CH ₂ —F	448	107				
CH ₃ CH ₂ CH ₂ —Cl	339	81				
CH ₃ CH ₂ CH ₂ —Br	285	68				
CH ₃ CH ₂ CH ₂ —I	222	53				
CH ₃ CH ₂ CH ₂ —OH	381	91				

hydrogen																	22/55s y	helium
1																		2
l H																		He
1.0079																		4.0026
lithium	beryllium												boron	carbon	nitrogen	oxygen	fluorine	neon
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
5250													382	50.50	150500	335	1818	1000
Na	Mg												ΑI	Si	Р	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
															_			
K	(2																	
	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63,546	65.39	69.723	72.61	As 74.922	78.96	Br 79.904	83.80
39.098 rubidium	40.078 strontium		44.956 yttrium	47,867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58,693 palladium	63,546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79,904 iodine	83.80 xenon
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium 39	47.867 zirconium 40	50.942 niobium 41	51,996 molybdenum 42	54.938 technetium 43	55.845 ruthenium 44	58.933 rhodium 45	58,693 palladium 46	63.546 silver 47	65,39 cadmium 48	69.723 indium 49	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79.904	83.80 xenon 54
39.098 rubidium 37	40.078 strontium 38		44.956 yttrium	47.867 zirconium 40	50.942 niobium 41	51,996 molybdenum 42	54.938 technetium	55.845 ruthenium 44	58.933 rhodium 45	58,693 palladium 46	63.546 silver 47	65,39 cadmium 48	69.723 indium	72.61 tin 50	74.922 antimony 51	78.96 tellurium 52	79,904 iodine	83.80 xenon 54
39.098 rubidium	40.078 strontium		44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224	50.942 niobium 41 Nb 92.906	51.996 molybdenum 42 Mo 95.94	54.938 technetium 43 Tc [98]	55.845 ruthenium	58.933 rhodium	58.693 palladium 46 Pd 106.42	63,546 silver	65.39 cadmium	69.723 indium 49 In	72.61 tin 50 Sn	74.922 antimony 51 Sb 121.76	78.96 tellurium 52 Te 127.60	79.904 iodine 53	83.80 xenon 54 Xe 131.29
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium		44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	55.845 ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65,39 cadmium 48 Cd 112,41 mercury	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium	79.904 lodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55	40.078 strontium 38 Sr 87.62 barium 56	57-70	44.956 yttrium 39 Y 88.906	47.867 zirconium 40 Zr 91.224 hafnium 72	50.942 niobium 41 Nb 92.906 tantalum 73	51.996 molybdenum 42 Mo 95.94 tungsten 74	54,938 technetium 43 TC [98] rhenium 75	55,845 ruthenium 44 Ru 101.07 osmium 76	58.933 rhodium 45 Rh 102.91	58.693 palladium 46 Pd 106.42 platinum 78	63.546 silver 47 Ag 107.87 gold 79	65.39 cadmium 48 Cd 112.41 mercury 80	69.723 indium 49 In	72.61 tin 50 Sn 118.71 lead 82	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium	strontium 38 Sr 87.62 barium	57-70 ★	44.956 yttrium 39 Y 88.906 lutetium	47.867 zirconium 40 Zr 91.224 hafnium	50.942 niobium 41 Nb 92.906 tantalum	51.996 molybdenum 42 Mo 95.94 tungsten	54.938 technetium 43 TC [98] rhenium	55.845 ruthenium 44 Ru 101.07 osmium	58.933 rhodium 45 Rh 102.91 iridium	palladium 46 Pd 106.42 platinum	63.546 silver 47 Ag 107.87 gold	65,39 cadmium 48 Cd 112,41 mercury	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead	74.922 antimony 51 Sb 121.76 bismuth	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 lodine 53 1 126.90 astatine	83.80 xenon 54 Xe 131.29 radon
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33		44.956 yttrium 39 Y 88.906 lutetium 71 Lu 174.97	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95	51,996 molybdenum 42 MO 95,94 tungsten 74 W	54.938 technetium 43 TC [98] rhenium 75 Re 186.21	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23	58,933 rhodium 45 Rh 102,91 iridium 77 Ir	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08	63,546 silver 47 Ag 107,87 gold 79 Au 196,97	65,39 cadmium 48 Cd 112,41 mercury 80 Hg 200,59	indium 49 In 114.82 thallium	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2	74.922 antimony 51 Sb 121.76 bismuth 83	78.96 tellurium 52 Te 127.60 polonium 84	79.904 lodine 53 126.90 astatine 85	83.80 xenon 54 Xe 131.29 radon 86
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium	technetium 43 TC [98] rhenium 75 Re 186.21 bohrlum	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium	58,693 palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnilium	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquaddum	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium 87	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium 88	× 89-102	44,956 yttrium 39 X 88,906 lutetium 71 Lu 174,97 lawrendum 103	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium 104	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium 105	51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium 106	technetium 43 Tc [98] rhenium 75 Re 186.21 bohrium 107	ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium 108	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium 109	palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnillum 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium 111	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquadium 114	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn
39.098 rubidium 37 Rb 85.468 caesium 55 Cs 132.91 francium	40.078 strontium 38 Sr 87.62 barium 56 Ba 137.33 radium	*	44,956 yttrium 39 Y 88,906 lutetium 71 Lu 174,97 lawrencium	47.867 zirconium 40 Zr 91.224 hafnium 72 Hf 178.49 rutherfordium	50.942 niobium 41 Nb 92.906 tantalum 73 Ta 180.95 dubnium	51,996 molybdenum 42 Mo 95,94 tungsten 74 W 183,84 seaborgium	technetium 43 TC [98] rhenium 75 Re 186.21 bohrlum	55.845 ruthenium 44 Ru 101.07 osmium 76 Os 190.23 hassium	58,933 rhodium 45 Rh 102,91 iridium 77 Ir 192,22 meitnerium	palladium 46 Pd 106.42 platinum 78 Pt 195.08 ununnillum 110	63,546 silver 47 Ag 107.87 gold 79 Au 196.97 unununium	cadmium 48 Cd 112.41 mercury 80 Hg 200.59 ununbium 112	69,723 indium 49 In 114.82 thallium 81	72.61 tin 50 Sn 118.71 lead 82 Pb 207.2 ununquaddum	74.922 antimony 51 Sb 121.76 bismuth 83 Bi	78.96 tellurium 52 Te 127.60 polonium 84 Po	79.904 iodine 53	83.80 xenon 54 Xe 131.29 radon 86 Rn

v .							
* [_a	nt	ha	nic	le.	ser	les

^{* *} Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
-	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ı	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
- 1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
- 1	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]